Network Computing and Efficient Algorithms Maximal Independent Set

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology University of Science and Technology of China (USTC)

September 1, 2021

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Outline

Maximal Independent Set (Deterministic Alg.) Original Fast MIS (Randomized Alg.) Fast MIS v2 Applications of Independent Set

1 Maximal Independent Set (Deterministic Alg.)

2 Original Fast MIS (Randomized Alg.)

3 Fast MIS v2

Applications of Independent Set

Maximal Independent Set

Definition 7.1 (Independent Set)

Given an undirected Graph G = (V, E) an independent set is a subset of nodes $U \subseteq V$, such that no two nodes in U are adjacent. An independent set is a **maximal** if no node can be added without violating independence. An independent set of **maximum** cardinality is called maximum.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Maximal Independent Set

Definition 7.1 (Independent Set)

Given an undirected Graph G = (V, E) an independent set is a subset of nodes $U \subseteq V$, such that no two nodes in U are adjacent. An independent set is a **maximal** if no node can be added without violating independence. An independent set of **maximum** cardinality is called maximum.

Figure 7.2: Example graph with 1) a maximal independent set (MIS) and 2) a maximum independent set (MaxIS).

Remarks

- Computing a maximum independent set (MaxIS) is equivalent to computing maximum clique on the complementary graph.
 - Both problems are NP-hard.
 - Not approximable within $n^{0.5-\varepsilon}$ within polynomial time.
- MIS and MaxIS can be quite different.
- Computing a MIS sequentially is trivial...
 - How to compute a MIS in a distributed way?

• □ • • □ • • □ • • □ •

Slow MIS

Require: Node IDs

Every node *v* executes the following code:

ALGORITHM 7.3: SLOW MIS()

- 1: **if** all neighbours of *v* with lager identifiers have decided not to join the MIS **then**
- 2: *v* decides to join the MIS

Slow MIS

Require: Node IDs

Every node *v* executes the following code:

ALGORITHM 7.3: SLOW MIS()

- 1: **if** all neighbours of *v* with lager identifiers have decided not to join the MIS **then**
- 2: *v* decides to join the MIS

Theorem 7.4 (Analysis of Algorithm 7.3).

Algorithm 7.3 features a time complexity of O(n) and a message complexity of O(m)

Slow MIS

Require: Node IDs

Every node *v* executes the following code:

ALGORITHM 7.3: SLOW MIS()

- 1: **if** all neighbours of *v* with lager identifiers have decided not to join the MIS **then**
- 2: *v* decides to join the MIS

Theorem 7.4 (Analysis of Algorithm 7.3).

Algorithm 7.3 features a time complexity of O(n) and a message complexity of O(m)

Not better than the sequential algorithm in the worst case!

Using Vertex Coloring

Basic idea

- Each color class is an independent set
- Not necessarily a MIS

イロト イヨト イヨト イヨト

臣

Using Vertex Coloring

Basic idea

- Each color class is an independent set
- Not necessarily a MIS

• MIS algorithm using vertex coloring:

- In the first round all nodes of the first color join the MIS and notify their neighbors.
- Then, all nodes of the second color which do not have a neighbor that is already in the MIS join the MIS and inform their neighbors.
- This process is repeated for all colors.

Using Vertex Coloring

Basic idea

- Each color class is an independent set
- Not necessarily a MIS

• MIS algorithm using vertex coloring:

- In the first round all nodes of the first color join the MIS and notify their neighbors.
- Then, all nodes of the second color which do not have a neighbor that is already in the MIS join the MIS and inform their neighbors.
- This process is repeated for all colors.

Corollary 7.5

Given a coloring algorithm that runs in time T and needs C colors we can construct a MIS in time T + C

(日)

Fast MIS

The algorithm operates in synchronous rounds, grouped into phases. A single phase is as follows:

ALGORITHM 7.6: FAST MIS()

- 1: Each node v marks itself with probability $\frac{1}{2d(v)}$, where d(v) is the current degree of v.
- 2: If no higher degree neighbour of v is also marked, node v joins the MIS. If a higher degree neighbor if v is marked, node v unmarks itself again (If the neighbors have the same degree, tries a broken arbitrarily, *e.g.*, by identifier).
- 3: Delete all nodes that joined the MIS and their neighbors, as they cannot join the MIS anymore.

Fast MIS

The algorithm operates in synchronous rounds, grouped into phases. A **single phase** is as follows:

ALGORITHM 7.6: FAST MIS()

- 1: Each node v marks itself with probability $\frac{1}{2d(v)}$, where d(v) is the current degree of v.
- 2: If no higher degree neighbour of v is also marked, node v joins the MIS. If a higher degree neighbor if v is marked, node v unmarks itself again (If the neighbors have the same degree, tries a broken arbitrarily, *e.g.*, by identifier).
- 3: Delete all nodes that joined the MIS and their neighbors, as they cannot join the MIS anymore.

Theorem 7.11 (Analysis of Algorithm 7.6)

Algorithm 7.6 terminates in expected time $O(\log n)$

Fast MIS terminates in expeded time $O(\log n)$

d(v): node degree of v
N(v): set of neighbors of v
H(v): set of neighbors of v with higher degree ...
M: set of nodes marked in Step 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fast MIS terminates in expeded time $O(\log n)$

Lemma 7.1(Joining MIS).

A node v joins the MIS in Step 2 with probability $P \ge \frac{1}{4d(v)}$

Fast MIS terminates in expeded time $O(\log n)$

Lemma 7.1(Joining MIS).

A node v joins the MIS in Step 2 with probability $P \ge \frac{1}{4d(v)}$

$$P[v \notin MIS | v \in M] = P[there is a node w \in H(v), w \in M | v \in M]$$
$$= P[there is a node w \in H(v), w \in M]$$
$$\leq \sum_{w \in H(v)} P[w \in M] = \sum_{w \in H(v)} \frac{1}{2d(w)}$$
$$\leq \sum_{w \in H(v)} \frac{1}{2d(v)} \leq \frac{d(v)}{2d(v)} = \frac{1}{2}$$

Then

$$P[v \in MIS] = P[v \in MIS | v \in M] \cdot P[v \in M] \ge \frac{1}{2} \cdot \frac{1}{2d(v)}$$

Fast MIS terminates in expeded time $O(\log n)$

Lemma 7.8(Good Nodes).

A node v is called good if

$$\sum_{v \in N(v)} \frac{1}{2d(w)} \ge \frac{1}{6}$$

where N(v) is the set of neighbors of v. Otherwise we call v a bad node. A good node will be removed in Step 3 with probability $p \ge \frac{1}{36}$.

Fast MIS terminates in expeded time $O(\log n)$

Lemma 7.8(Good Nodes).

A node v is called good if

$$\sum_{v \in N(v)} \frac{1}{2d(w)} \ge \frac{1}{6}$$

where N(v) is the set of neighbors of v. Otherwise we call v a bad node. A good node will be removed in Step 3 with probability $p \ge \frac{1}{36}$.

Lemma 7.9(Good Edges).

An edge e = (u, v) is called bad if both u and v are bad; else the edge is called good. The following holds: At any time at least half of the edges are good

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Fast MIS v2

The algorithm operates in synchronous rounds, grouped into phases. A single phase is as follows:

ALGORITHM 7.12: FAST MIS V2()

- 1: Each node v chooses a random value $r(v) \in [0,1]$ and send it to its neighbors.
- 2: if r(v) < r(w) for all neighbors $w \in N(v)$, node v enters the MIS and informs its neighbors.
- 3: if *v* or a neighbor of *v* entered the MIS, *v* terminates (*v* and all edges adjacent to *v* are removed from the graph), otherwise *v* enters the nest phase.

Corollary 7.18(Running Time of Algorithm 7.12)

Algorithm 7.12 terminates *w.h.p.* in *O*log*n* time.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Application for Matching

Definition 7.19 (Matching)

Given a graph G = (V, E) a matching is a subset of edges $M \subseteq E$, such that no two edges in M are adjacent(*i.e.*, where no node is adjacent to two edges in the matching). A matching is **maximal** if no edge can be added without violating the above constraint. A matching is **maximum** cardinality is called maximum. A matching is called **perfect** if each node is adjacent to an edge in the matching

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Application for Matching

Definition 7.19 (Matching)

Given a graph G = (V, E) a matching is a subset of edges $M \subseteq E$, such that no two edges in M are adjacent(*i.e.*, where no node is adjacent to two edges in the matching). A matching is **maximal** if no edge can be added without violating the above constraint. A matching is **maximum** cardinality is called maximum. A matching is called **perfect** if each node is adjacent to an edge in the matching

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Application for Matching

Definition 7.19 (Matching)

Given a graph G = (V, E) a matching is a subset of edges $M \subseteq E$, such that no two edges in M are adjacent(*i.e.*, where no node is adjacent to two edges in the matching). A matching is **maximal** if no edge can be added without violating the above constraint. A matching is **maximum** cardinality is called maximum. A matching is called **perfect** if each node is adjacent to an edge in the matching

Application for Matching

Definition 7.19 (Matching)

Given a graph G = (V, E) a matching is a subset of edges $M \subseteq E$, such that no two edges in M are adjacent(*i.e.*, where no node is adjacent to two edges in the matching). A matching is **maximal** if no edge can be added without violating the above constraint. A matching is **maximum** cardinality is called maximum. A matching is called **perfect** if each node is adjacent to an edge in the matching

Application for Matching

- In constrast to MaxIS, a maximum matching can be found in polynomial time and also easi to approximate, since any maximal matching is a 2-approximation.
- An independent set algorithm is also a matching algorithm: Let G = (V, E) be the graph for which we want to construct the matching. The so-called line graph G' is defined as follows: for every edge in G there is a node in G'; two nodes in G' are connected by an edge if their respective edges in G are adjacent. A (maximal) independent set in the line graph G' is a (maximal) matching in the original graph G, and vice versa. Using Algorithm 7.12 directly produces a $O(\log n)$ bound for maximal matching.

13/18

Application for Coloring

ALGORITHM 7.20 GENERAL GRAPH COLORING()

- 1: Given a graph G = (V, E) we virtually build a graph G' = (V', E') as follows:
- Every node v ∈ V clones itself d(v) + 1 times (v₀,..., v_{d(v)} ∈ V'),d(v) being the degree of v in G.
- 3: The edge set E' of G' is as follows:
- 4: First all clones are in a clique: $(v_i, v_j) \in E'$, for all $v \in V$ and all $0 \le i \le j \le d(v)$.
- 5: Second all i^{th} clones of neighbors in the original graph G are connected: $(u_i, v_i) \in E'$, for all $(u, v) \in E$ and all $0 \le i \le min(d(u), d(v))$.
- 6: Now we simply run (simulate) the fast MIS algorithm 7.12 on G'.
- 7: if node v_i is in the MIS in G', then node v gets color i.

• □ • • □ • • □ • • □ •

Application for Coloring

Theorem 7.21(Analysis of Algorithm 7.20).

Algorithm 7.20 (Δ +1)-colors an arbitrary graph in $O(\log n)$ time, with high probability, Δ being the largest degree in the graph.

Application for Coloring

Theorem 7.21(Analysis of Algorithm 7.20).

Algorithm 7.20 (Δ +1)-colors an arbitrary graph in $O(\log n)$ time, with high probability, Δ being the largest degree in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS. And because of the d(v) + 1 clones of node v every node will get a free color! The running time remains logarithmic since G' has $O(n^2)n$ nodes and the exponent becomes a constant factor when applying the logarithm.

Application for Coloring

Theorem 7.21(Analysis of Algorithm 7.20).

Algorithm 7.20 (Δ +1)-colors an arbitrary graph in $O(\log n)$ time, with high probability, Δ being the largest degree in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS. And because of the d(v) + 1 clones of node v every node will get a free color! The running time remains logarithmic since G' has $O(n^2)n$ nodes and the exponent becomes a constant factor when applying the logarithm.

- Together with Corollary 7.5 we get quite close ties between $(\Delta + 1)$ -coloring and the MIS problem.
- Computing a MIS also solves another graph problem on graphs of bounded independence.

Application for Dominating Sets

Definition 7.22(Bounded Independence).

G = (V, E) is of bounded independence, if for every node $v \in V$ the largest independent set in the neighborhood N(v) is bounded by a constant.

Definition 7.22((Minimum) Dominating Sets).

A dominating set is a subset of the nodes such that each node is the set or adjacent to a node in the set.

A minimum dominating set is a dominating set containing the least possible number of nodes.

Application for Dominating Sets

Definition 7.22(Bounded Independence).

G = (V, E) is of bounded independence, if for every node $v \in V$ the largest independent set in the neighborhood N(v) is bounded by a constant.

Definition 7.22((Minimum) Dominating Sets).

A dominating set is a subset of the nodes such that each node is the set or adjacent to a node in the set.

A minimum dominating set is a dominating set containing the least possible number of nodes.

- In general, finding a dominating set less than a factor log *n* larger than a minimum dominating set is NP-hard.
- Any MIS is a dominating set: if a node was not covered, it could join the independent set.
- In general a MIS and a minimun dominating set have not much in common (think of a star). For graphs of bounded Independence, this is different.

ヘロン 人間 とくほ とくほ とう

Application for Dominating Sets

Corollary 7.24.

On graphs of bounded independence, a constant-factor approximation to a minimum dominating set can be found in the time $O(\log n)$ w.h.p.

Application for Dominating Sets

Corollary 7.24.

On graphs of bounded independence, a constant-factor approximation to a minimum dominating set can be found in the time $O(\log n)$ w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a dominating set, each node from I is in M or adjacent to a node in M. Since the graph is of bounded independence, no node in M is adjacent to more than constantly many nodes from I. Thus, $|I| \in O(|M|)$. Therefore, we can compute a MIS woth Algorithm 7.12 and output it as the dominating set, which takes $O(\log n)$ rounds w.h.p.

References

- MIS results that depend on the degree of the graph:
 - Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring in linear (in delta) time. In STOC, 2009.
 - Fabian Kuhn. Weak graph colorings: distributed algorithms and applications. In SPAA, 2009.
- The strongest MIS time complexity lower bounds so far:
 - F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally! In PODC, 2004.
- Recent research focused on improving the O(log n) time complexity for special graph classes:
 - Christoph Lenzen and Roger Wattenhofer. MIS on trees. In PODC, pages 41-48, 2011.
 - Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed Maximal Independent Set Algorithm for Growth-Bounded Graphs. In PODC, 2008.